第 5 章 二项式系数
EX1
Prove Pascal's formula by substituting the values of the binomial coefficients as given in equation (5.1).
从右向左证明帕斯卡公式
EX2
Fill in the rows of Pascal's triangle corresponding to n = 9 and 10.
验证程序
#include <iostream>
#include <vector>
using namespace std;
const int tableSize = 67;
vector<vector<long long>> combinTable(tableSize, vector<long long>(tableSize, 0));
void buildCombinTable() {
for(int i = 1; i < tableSize; ++ i) {
combinTable[i][i] = combinTable[i][0] = 1;
}
for(int i = 2; i < tableSize; ++ i) {
for(int j = i/2; j > 0; -- j) {
combinTable[i][j] = combinTable[i-1][j-1] + combinTable[i-1][j];
combinTable[i][i-j] = combinTable[i][j];
}
}
}
long long getCombin(int n, int m) {
return combinTable[n][m];
}
int main() {
buildCombinTable();
int n = 10;
printf("\t");
for(int i = 0; i <= n; ++ i) {
printf("%d\t", i);
}
printf("\n");
for(int i = 0; i <= n; ++ i) {
printf("%d\t", i);
for(int j = 0; j <= i; ++ j) {
printf("%lld\t", combinTable[i][j]);
}
printf("\n");
}
return 0;
}
EX3
Consider the sum of the binomial coefficients along the diagonals of Pascal's triangle running upward from the left. The first few are 1,1,1 + 1 = 2,1 + 2 = 3, 1 + 3 + 1 = 5, 1 + 4 + 3 = 8. Compute several more of these diagonal sums, and determine how these sums are related. (Compare them with the values of the counting function f in Exercise 4 of Chapter 1.)
可以发现所求序列就是每条斜对角线之和构成的序列,
并且 k 要满足,
显然,我们有平凡的解,
第一章 EX4 中的 f(x) 就是斐波那契数列。
EX4
Expand
and using the binomial theorem.
EX5
Expand
using the binomial theorem.
EX6
What is the coefficient of
in the expansion of ? What is the coefficient of ? (There is not a misprint in this last question!)
从 18 项中选择 5 项 x,其余项为 y,因此
EX7
Use the binomial theorem to prove that
Generalize to find the sum
for any real number r.
带入 x=2 即有,
所以,带入 x=r 有,
EX8
Use the binomial theorem to prove that
EX9
Evaluate the sum
EX10
Use combinatorial reasoning to prove the identity (5.2).
设 x 是
- 先构造 x,从 n 个元素中选 k 个,有
种方法,再从 x 中选择 y,共有 k 种方法,由乘法原理共有 种方法。 - 先选 y,从 n 个元素中选 1 个,有 n 种方法,再添加 n-1 个元素补全 x,有
种方法,由乘法原理共有 种方法。
因为 1 和 2 是相同问题的不同解法,因此结果等价,
有助于理解的方法
方法一:从 n 位同学中先选出 k 位班委,再从 k 位班委中选出 1 位班长;
方法二:先从 n 位同学中选出 1 位班长,再从剩余 n-1 位同学中选出剩余 k-1 位班委。
EX11
Use combinatorial reasoning to prove the identity (in the form given)
(Hint: Let S be a set with three distinguished elements a, b, and c and count certain k-subsets of S.)
设 S 是
下面考虑问题:集合
- 所有的 k 子集数减去不包含 1,2,3 的 k 子集数;
- 包含 1,包含 2 但不包含 1,包含 3 但不包含 1,2 三种 k 子集数之和。
我们给出直观的图来判断集合之间的关系:
两种解法等价,因此有,
EX12
Let n be a positive integer. Prove that
(Hint: For n = 2m, consider the coefficient of
in .)
当
因此有,
当
综上,证毕。
EX13
Find one binomial coefficient equal to the following expression:
连续使用帕斯卡公式进行合并。
EX14
Prove that
for r a real number and k an integer with
.
对于实数 r,有二项式系数定义,
因此,当
EX15
Prove, that for every integer n > 1,
两边同时求一阶导数,
两边同时带入 x=-1,即证明上式。
EX16
By integrating the binomial expansion, prove that, for a positive integer n,
两边同时对 x 进行积分,
两边同时带入 x=0,求得
EX17
Prove the identity in the previous exercise by using (5.2) and (5.3).
对于
因此,提出公共部分,由式 (5.3) 可得,
EX18
Evaluate the sum
由 EX16 结论,带入 x=-1,并将整个式子添加负号,有
EX19
Sum the series
by observing that and using the identity (5.19).
因此每个平方数都可以写成组合数和的形式,
信息
使用到帕斯卡的迭代形式,具体参考正文 p85,公式 (5.19)。
EX20 🔑
Find integers a, b, and c such that
for all m. Then sum the series
.
所以有方程组,
所以,
EX21
Prove that, for all real numbers r and all integers k,
当
EX22
Prove that, for all real numbers r and all integers k and m,
当
EX23
Every day a student walks from her home to school, which is located 10 blocks east and 14 blocks north from home. She always takes a shortest walk of 24 blocks.
(a) How many different walks are possible?
(b) Suppose that four blocks east and five blocks north of her home lives her best friend, whom she meets each day on her way to school. Now how many different walks are possible?
(c) Suppose, in addition, that three blocks east and six blocks north of her friend's house there is a park where the two girls stop each day to rest and play. Now how many different walks are there?
(d) Stopping at a park to rest and play, the two students often get to school late. To avoid the temptation of the park, our two students decide never to pass the intersection where the park is. Now how many different walks are there?
EX25 Q(a)
移动 24 次,一共往东 10 次,
EX25 Q(b)
拆成两部分,先到朋友家,再到学校,
EX25 Q(c)
拆成三部分,
EX25 Q(d)
总路径数,减去经过公园的路径数,
顺便一提 💡
本题的街区和第二章 EX28 的街区有些不同,前者视作一个点,后者则看作一个块。
EX24
Consider a three-dimensional grid whose dimensions are 10 by 15 by 20. You are at the front lower left corner of the grid and wish to get to the back upper right corner 45 "blocks" away. How many different routes are there in which you walk exactly 45 blocks?
这本质上是一个分组问题,可以想想为把 45 个带号求,放入 x,y 和 z 三个盒子中。
因此一共有
EX25
Use a combinatorial argument to prove the Vandermonde convolution for the binomial coefficients: For all positive integers
, and n, Deduce the identity (5.16) as a special case.
考虑从
- 先考虑从男同学中选出 k 名同学担任班委,则还需要从女同学中选出剩余 n-k 名班委,而对于每一个 k 的选法,符合加法法则;
- 不考虑性别,直接考虑从
名同学选出 n 名同学担任班委。
显然,方法 1 和方法 2 是等价的,因此得证。
对于式 (5.16),只需要取
EX26
Let n and k be integers with
. Prove that
由 EX25 可知,
即证,
结合帕斯卡公式,这是很容易验证的。
小技巧
本题凑二项式系数的范德蒙德卷积公式时,补充的两项都是
再者,就是范德蒙德卷积公式的 k 并非只能从 0 取到 n,补充定义也是可以的。
EX27
Let n and k be positive integers. Give a combinatorial proof of the identity (5.15):
还是使用学生的例子从 n 名同学中,先预选 k 名班委,再在 k 名班委中选出班长与学习委员(可以为同一人)。
由上面的例子,可以确定选出 k 名班委有
下面进行逆向思考,先委任班长与学习委员。 如果班长与学习委员为同一人,其余人要么是班委,要么不是班委,一共有
两种解法求解的是同一问题,因此结果等价,题目得证。
EX28
Let nand k be positive integers. Give a combinatorial proof that
从 n 名男同学和 n 名女同学中选出 n 名班委,其中必须有一位女同学担任班长。
从女同学中选出 k 名班委,再从男同学中选出 n-k 名班委,k 名女同学中选出一人为班长, 有
或者,先从 n 名女同学中选出班长,再从剩余 2n-1 名同学中选择 n-1 名班委,即
EX29
Find and prove a formula for
where the summation extends over all nonnegative integers r, s and t with sum r + s + t = n.
对比两端
提示
有些类似 EX12 的思路。
EX30
Prove that the only antichain of S = {1, 2, 3, 4} of size 6 is the antichain of all 2-subsets of S.
由定理 5.3.3 知,n 元素集合的最大反链长为
设
设
也即
由二项式系数的单峰性,可知,
做差整理可得,
但是,
并且当 n=4 时,
解题思路
先说明大小为 6 的反链就是最大反链,再论证最大反链唯一,最后说明为最大反链是 2 子集的反链。
EX31
Prove that there are only two antichains of S = {1, 2, 3, 4, 5} of size 10 (10 is maximum by Spemer's theorem), namely, the antichain of all 2-subsets of Sand the antichain of all 3-subsets.
由 EX30 知,n=5 的最大反链长为
EX32 ⭐
* Let S be a set of n elements. Prove that, if n is even, the only antichain of size
is the antichain of all -subsets; if n is odd, prove that the only antichains of this size are the antichain of all -subsets and the antichain of all -subsets.
略
EX33
Construct a partition of the subsets of {1, 2, 3, 4, 5} into symmetric chains.
需要采用递推的方式,由前一项构造后一项;满足如下两点,
- 把最后一个子集复制并插入 n,把该子集作为新的最后一个子集;
- 把 n 插入到除最后一个子集外所有的子集(并删除最后一个子集)。
我们给出 n=4 的结果(可以在草稿上求出),
EX33PS
对于特殊的行 24,它没有除最后一个子集外的所有子集,所以不执行第二项操作。
EX34 🚧 💊
In a partition of the subsets of {1,2, ... ,n} into symmetric chains, how many chains have only one subset in them? two subsets? k subsets?
EX34 参考链接
待完善 🚧
大意就是求出
EX35
A talk show host has just bought 10 new jokes. Each night he tells some of the jokes. What is the largest number of nights on which you can tune in so that you never hear on one night at least all the jokes you heard on one of the other nights? (Thus, for instance, it is acceptable that you hear jokes 1, 2, and 3 on one night, jokes 3 and 4 on another, and jokes 1, 2, and 4 on a third. It is not acceptable that you hear jokes 1 and 2 on one night and joke 2 on another night.)
本题等价于求 10 个元素的集合最大反链长度,由公式
EX36
Prove the identity of Exercise 25 using the binomial theorem and the relation
.
两端展开,对比
EX37
Use the multinomial theorem to show that, for positive integers nand t,
where the summation extends over all nonnegative integral solutions
of .
由多项式定理,直接带入,
EX38
Use the multinomial theorem to expand
.
EX39
Determine the coefficient of
in the expansion of
系数为
EX40
What is the coefficient of
in the expansion of
EX41
Expand
by boserving that and then using the binomial theorem.
记
EX42
Prove the identity (5.21) by a combinatorial argument. (Hint: Consider the permutations of a multiset of objects of t different types with repetition numbers
, respectively. Partition these permutations according to what type of object is in the first position.)
多重集合
之后采用另一种算法,优先决定第一个位置放哪种元素,有 t 种情况,之后对剩余的 n-1 个元素进行 n-1 排列, 假如第一个位置选择
综上,证毕。
EX43
Prove by induction on n that, for n a positive integer,
Assume the validity of
当 n=1 是显然成立;假设对正整数 n 上式仍然成立(
综上,证毕。
EX43PS
如果使用帕斯卡公式,中间化简合并的过程类似生成函数。
EX44
Prove that
where the summation extends over all nonnegative integral solutions of
.
由 EX41 可以得到公式,
化简题目中的式子,
IMPORTANT
本题英文原版书中要证明该式等于 1,应该是印刷错误。
EX45
Prove that
相比上一题,本题更为直接,没有倒数需要处理。
IMPORTANT
本题英文原版书中幂指数印刷错误。
EX46
Use Newton's binomial theorem to approximate
.
参考正文 P91,
EX46PS
事实上,上面的系数就是泰勒展开的系数。
EX47
Use Newton's binomial theorem to approximate
.
参考答案给出的构造方法,
我自己想的构造,
结果应该是一致的。
EX48
Use Theorem 5.6.1 to show that, if m and n are positive integers, then a partially ordered set of mn + 1 elements has a chain of size m + 1 or an antichain of size n+1.
采用反证法,假设命题不成立,即 mn+1 个元素的偏序集,链长度最大为 m,反链长度最大为 n。
设 r 为最大链长,显然有
产生了矛盾,假设不成立。
故 mn+1 个元素的偏序集有一个大小为 m+1 的链或大小为 n+1 的反链。
EX49
Use the result of the previous exercise to show that a sequence of mn + 1 real numbers either contains an increasing subsequence of m + 1 numbers or a decreasing subsequence of n + 1 numbers (see Application 9 of Section 2.2).
取 mn+1 个实数
可以发现:链对应递增子序列
EX49PS
结论在 3.2 节,稍作调整即有结论:由 mn+1 个实数构成的序列,要么含有长度为 m+1 的递增(非递减)子序列,要么含有长度为 n+1 的递减子序列。
书中递增一般指非严格递增,递减则是严格递减。
EX50
Consider the partially ordered set (X, |) on the set X = {1, 2, ... ,12} of the first 12 positive integers, partially ordered by "is divisible by." (a) Determine a chain of largest size and a partition of X into the smallest number of antichains. (b) Determine an antichain of largest size and a partition of X into the smallest number of chains.
EX50Q(a)
最大大小的链为 1,2,4 8,最大链长为 4,反链划分如下,
EX50Q(b)
最大大小的反链为 7, 8, 9, 10, 11, 12,(选出度为 0 的所有结点)反链长为 6,链的划分如下,
EX51
Let Rand S be two partial orders on the same set X. Considering R and S as subsets of
, we assume that but . Show that there exists an ordered pair (p, q), where and such hat is also a partial order on X. Show by example that not every such (p, q) has the property that R' is a partial order on X.
举反例的题目,取
取 p=2,q=3,这时