第 8 章 特殊计数序列
EX1
Let 2n (equally spaced) points on a circle be chosen. Show that the number of ways to join these points in pairs, so that the resulting n line segments do not intersect, equals the nth Catalan number
.
记该问题的解为
显然
信息
本题与第 7 章 EX41 是类似的问题
EX2
Prove that the number of 2-by-n arrays
that can be made from the numbers 1,2, ..., 2n such that
equals the
th Catalan number, .
将数组第一行的元素标记为 +1,第二行元素标记为 -1。 问题可以转化为:将 +1 和 -1 按照从左到右的顺序排列,并且保证第 i 个 +1 在第 i 个 -1 前面,即
这与前 k 项和满足
等价,该问题与卡特兰数的组合意义相同,解即为第 n 个卡特兰数。
EX3
Write out all of the multiplication schemes for four numbers and the triangularization of a convex polygonal region of five sides corresponding to them.
考虑固定顺序的乘法,因此一共有
EX4
Determine the triangularization of a convex polygonal region corresponding to the following multiplication schemes:
(a)
(b)
EX4(a)
以 EX4(a) 为例,步骤同上一题,
EX5 ⭐
* Let m and n be nonnegative integers with n
m. There are m + n people in line to get into a theater for which admission is 50 cents. Of the m + n people, n have a 50-cent piece and m have a $1 dollar bill. The box office opens with an empty cash register. Show that the number of ways the people can line up so that change is available when needed is (The case m = n is the case treated in Section 8.1.)
EX6
Let the sequence
be defined by . Determine the difference table, and find a formula for .
计算
所以
EX7
The general term
of a sequence is a polynomial in n of degree 3. If the first four entries of the Oth row of its difference table are 1, -1, 3, 10, determine and a formula for ·
由题意,
因此
EX8
Find the sum of the fifth powers of the first n positive integers.
设
EX9
Prove that the following formula holds for the kth-order differences of a sequence
:
采用数学归纳法证明,当 k=0 时,有
成立,假设当
当
综上,证毕。
EX10
If
is a polynomial in n of degree m, prove that the constants such that are uniquely determined. (Cf. Theorem 8.2.2.)
本题主要证明唯一性,假设存在不同的序列
显然
EX11
Compute the Stirling numbers of the second kind S(8, k), (k = 0, 1, ..., 8).
第二类 Stirling 数的性质,
进行打表,
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 127 | 966 | 1701 | 1050 | 266 | 28 | 1 |
验证程序
#include <iostream>
#include <vector>
using namespace std;
int main() {
auto stirList = vector<vector<int>>(10, vector<int>(10, 0));
for(int p = 1; p < 10; ++ p) {
stirList[p][p] = 1;
}
for(int p = 2; p < 10; ++ p) {
for(int k = 1; k < p; ++ k) {
stirList[p][k] = stirList[p-1][k] * k + stirList[p-1][k-1];
}
}
for(int p = 0; p < 10; ++ p) {
for(int k = 0; k <= p; ++ k) {
printf("%d\t", stirList[p][k]);
}
printf("\n");
}
printf("\n S(8, k), k = 0, 1, 2, ..., 8\n");
for(int k = 0; k <= 8; ++ k) {
printf("%d\t", stirList[8][k]);
}
return 0;
}
EX12
Prove that the Stirling numbers of the second kind satisfy the following relations:
(a)
(b)
(c)
(d)
EX12(a)
由定理 8.2.5 知
EX12(b)
EX12(c)
使用数学归纳法证明,当 n=1 时,
综上,证毕。
EX12(d)
考虑问题:将 n 个元素划分到 n-2 个不可区分的盒子且没有空盒子的个数 S(n, n-2)。
如果有一个盒子中有三个元素,有
因此有
EX13
Let X be a p-element set and let Y be a k-element set. Prove that the number of functions
which map X onto Y equals
X 映射到 Y 是满射,映射函数等价于把 p 个元素放入到 k 个可区分的盒子中,即有
翻译错误
中文版中满射(onto)被错译成到上函数
EX14 ⭐
* Find and verify a general formula for
involving Stirling numbers of the second kind.
EX15
The number of partitions of a set of n elements into k distinguishable boxes (some of which may be empty) is
. By counting in a different way, prove that If
, define to be 0.
方法一:考虑把 n 个元素分别放在 k 个盒子中,每个元素有 k 种放置放法,因此共
方法二:先区分盒子是否非空,从 k 个盒子中选出 i 个非空盒子,问题变为把 n 个元素放入 i 个可区分盒子且盒子非空中的方法数,即为
方法一和方法二是同一问题的两种解决方法,因此等价,所以有,
翻译错误
本题中文书中有翻译错误,把可区分写成了不可区分。
EX16
Compute the Bell number
. (Cf. Exercise 11.)
Bell 数
程序验证
#include <iostream>
#include <vector>
using namespace std;
int main() {
auto stirList = vector<vector<int>>(10, vector<int>(10, 0));
for(int p = 1; p < 10; ++ p) {
stirList[p][p] = 1;
}
for(int p = 2; p < 10; ++ p) {
for(int k = 1; k < p; ++ k) {
stirList[p][k] = stirList[p-1][k] * k + stirList[p-1][k-1];
}
}
for(int p = 0; p < 10; ++ p) {
for(int k = 0; k <= p; ++ k) {
printf("%d\t", stirList[p][k]);
}
printf("\n");
}
printf("\n S(8, k), k = 0, 1, 2, ..., 8\n");
int bellNum = 0;
for(int k = 0; k <= 8; ++ k) {
printf("%d\t", stirList[8][k]);
bellNum += stirList[8][k];
}
printf("\n Bell number B8 is %d\n", bellNum);
return 0;
}
EX17
Compute the triangle of Stirling numbers of the first kind s(n, k) up to n = 7.
第一类 Stirling 数的递推关系为,
初始条件与第二类 Stirling 数相同,
程序验证
#include <iostream>
#include <vector>
using namespace std;
int main() {
auto firstStirList = vector<vector<int>>(10, vector<int>(10, 0));
for(int p = 1; p < 10; ++ p) {
firstStirList[p][p] = 1;
}
for(int p = 2; p < 10; ++ p) {
for(int k = 1; k < p; ++ k) {
firstStirList[p][k] = firstStirList[p-1][k] * (p-1)
+ firstStirList[p-1][k-1];
}
}
for(int p = 0; p < 10; ++ p) {
for(int k = 0; k <= p; ++ k) {
printf("%d\t", firstStirList[p][k]);
}
printf("\n");
}
printf("\n s(7, k), k = 0, 1, 2, ..., 7\n");
for(int k = 0; k <= 7; ++ k) {
printf("%d\t", firstStirList[7][k]);
}
return 0;
}
EX18
Write
as a polynomial in n for k = 5,6, and 7.
由定义可以求出
也可以通过查表写
EX19 👻
Prove that the Stirling numbers of the first kind satisfy the following formulas:
(a)
(b)
结合递归式,易证。
EX20
VerifY that
= n!, and write n! as a polynomial in n using the Stirling numbers of the first kind. Do this explicitly for n = 6.
带入
带入
当
EX21
For each integer n = 1,2,3,4,5, construct the diagram of the set
of partitions of n, partially ordered by majorization.
这里的图(diagram)指的是 Ferrers 图,这是很容易画出的,以
信息
本题应该是优超(majorize)关系的 Hasse 图。
EX22 👻
(a) Calculate the partition number
and construct the diagram of the set , partially ordered by majorization. (b) Calculate the partition number
and construct the diagram of the set , partially ordered by majorization.
EX22(a)
以 (a) 为例,6 对应的分拆为,
因此
EX23
A total order on a finite set has a unique maximal element (a largest element) and a unique minimal element (a smallest element). What are the largest partition and smallest partition in the lexicographic order on
(a total order)?
最大分拆为 n,最小分拆为
EX24 🚧
A partial order on a finite set may have many maximal elements and minimal elements. In the set
of partitions of n partially ordered by majorization, prove that there is a unique maximal element and a unique minimal element.
简评
看了几份答案,似乎都不是严格的证明, 只是稍微解释了
待完善
EX25
Let
be distinct positive integers, and let equal the number of partitions of n in which all parts are taken from
. Define . Show that the generating function for is
由分拆数的性质,
EX26 👻
Determine the conjugate of each of the following partitions:
(a)
(b)
(c)
(d)
(e)
EX26(a)
以 (a) 为例,先画出 Ferrrers 图,再画出共轭分拆的图,
因此共轭分拆为
EX27
For each integer n > 2, determine a self-conjugate partition of n that has at least two parts.
设
当 n 为偶数时,取
以 n=7 和 n=8 分别为奇数和偶数的例子,如图,
EX28
Prove that conjugation reverses the order of majorization; that is, if
and are partitions of n and is majorized by , then is majorized by .
由题意,当
假设
即有
如图,由互换行列前后的关系可得,
根据放缩,
可得
其中 (1) 式与 (2) 式矛盾,因此假设不成立,综上,证毕。
EX29
Prove that the number of partitions of the positive integer n into parts each of which is at most 2 equals
. (Remark: There is a formula, namely the nearest integer to $\frac{(n+3)^2}{12}, for the number of partitions of n into parts each of which is at most 3 but it is much more difficult to prove. There is also one for partitions with no part more than 4, but it is even more complicated and difficult to prove.)
当
当
不论奇偶,都是分拆为 r+1 个部分,当 r 为偶数时,
综上,分拆成每一部分至多是 2 的分拆数等于
EX30
Prove that the partition function satisfies
考虑 n-1 的分拆数和 n 的分拆数,显然所有 n-1 的分拆数 +1 都是 n 的分拆数,此外 n 还有它自己作为分拆数,因此一定有
EX31 🚧
Evaluate
the number of regions into which k-dimensional space is partitioned by k - 1 hyperplanes in general position.
EX32
Use the recurrence relation (8.31) to compute the small Schroder numbers
and .
小 Schroder 数的性质:
由递推关系和初始项,可以计算出
求出
EX33
Use the recurrence relation (8.32) to compute the large Schroder numbers
and . Verify that and , as stated in Corollary 8.5.8.
大 Schroder 数的性质:
带入
提示
题目要求使用递推关系计算,大 Schroder 数的递推关系为,
注意与 Catalan 数进行区分。
EX34
Use the generating function for the large Schroder numbers to compute the first few large Schroder numbers.
大 Schroder 数序列的生成函数为
因此,
综上,有
EX35
Use the generating function for the small Schroder numbers to compute the first few small Schroder numbers.
小 Schroder 数序列的生成函数为
同上,带入
综上,有
EX36
Prove that the Catalan number
equals the number of lattice paths from (0,0) to (2n, 0) using only upsteps (1, 1) and downsteps (1, -1) that never go above the horizontal axis (so there are as many up steps as there are downsteps). (These are sometimes called Dyck paths.)
记上行步 (1,1) 为 -1,下行步 (1,-1) 为 +1,步行序列为
因为起点 y 坐标与终点 y 坐标相同,那么一定有 n 个上行步(+1)和 n 个下行步(-1),并且从不经过水平轴上方的格路径,即前 k 项和
EX37 ⭐
* The large Schroder number
counts the number of subdiagonal HVD-lattice paths from (0,0) to (n, n). The small Schroder number counts the number of dissections of a convex polygonal region of n + 1. Since for n 1, there are as many subdiagonal HVD-lattice paths from (0,0) to (n, n) as there are dissections of a convex polygonal region of n + 1 sides. Find a one-to-one correspondence between these lattice paths and these dissections.